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OPTIMIZATION OF IRRIGATION IN A HYDRODYNAMIC FILTERING MODEL* 

A.R. KASIMOV 

An extremum of the cross-sectional area of a flooded or drained region 
in the context of the intake of a ground flow by a free-surface due to 
seepage is determined. The contour of perfect drainage of a maximum 
volume with recharge from a flooded ground surface is found. The 
boundary control of a channel for a viscous fluid flow is established. 

In filtering theory, the characteristics of flows are determined using isoperimetric 
inequalities based on the optimization of the shape of the area of flow /l/. In what follows, 
problems of this type are solved by the method used in /2/ by three schemes: seepage above a 
head level, seepage to a perfectly drained level, and differential shear flow in a Taylor- 
Richardson cell. 

We consider the following schemes for a two-dimensional flow with a vertical axis of 
symmetry: 1) seepage with irregular intensity and discharge 2q in a field BC of width 2L, 
with a head level at depth H below the depression curve (Fig.1); 2) feeding with rate 2q, 
under the effect of a pressure H of selfcontained drainage of BC to a confining bed lying 
at a depth 2' below the flooded ground surface (Fig.2); 3) viscous fluid flow in a channel of 
width 2L above a curvilinear base BC with a boundary AD moving with velocity U, which is 
subject to a resistance F, (Fig.3). In schemes 1 and 2, the filtration is assumed to be 
linear and the ground is uniform and isotropic and in scheme 3, we assume the hypotheses of 
/3, 41. Then, the potential cp(z,y) for schemes I, 2 and the current velocity U&Y) for 

scheme 3 satisfy the Laplace equation in the corresponding area of flow G,. 
We formulate the problem of optimising the boundary of G,. 

Problem 1. For given q, L, H, determine the shape of BC which gives an extremum of 
the area S of the zone of flooding beneath the field of the feed. 

ProbZem 2. For given q, T, H, determine the drainage contour with an external volume S. 

ProbZem 3. For given F,, U,,L determine the shape of the drainage BC such that the 
cell S is extremal. 

We assume that the filtering coefficient is equal to unity and introduce the character- 
istic functions: 1) the Zhukov function w = 2s. ilo, 2) the complex potential w=cp+ i$, 3) 
the complex potential p= ~r+iv. In the planes o,ut,p (respectively), the area G, will 
correspond to: 1) bands, 2) and 3) rectangles, which we denote by G,,G*, G,. We map G, into 
the half-plane Im c>O of the variable E= &+ iq by the functions 

w = IqF (arcsin 5, h)iK, q/H = K/K’, a = l/l 

p = -iF,F (arosin 6, h)/(ZK), F,/U, = ZKIK’ 

K = F (n/2, 11). K’ = F (n/2, 1’). h’ = 1/l -A’ 

where F is an elliptic integral of the first type with modulus h. 
In scheme 1, the function w*= -iw, and in schemes 2 and 3, the function z=z+iy, are 

analytic in the half-plane Imc=O and the boundary conditions for these have the form: 1) 
Y= Imlu* = 0 for IEI>n, Co= Red =q for --(1 $E.<--1,@= -_4 for 1 d E da, Q, = f [Reo(E)l 
for --i <&~<1; 2)y= 0 for IEI>a,y=--T for i<IEI<u, Y=--T+yl*((6)1 for IEl<i; 3)y=O 
for IEI>cr, z=*L for i<IEI<u, z=z[V(E)l for /El<i. Then the solution of the mixed 
boundary-value problem for scheme 1 and the control function are given by: 

TR (7. bl dr -t s 1 Q (7) B (T, 6) dr 
-1 -1 

273 



214 

R (7, 6) = wa* - + (7 - 5)1, f IRe 0 (EN = -nE + $2 (EL s2 (+I) = 0 
where, the 1/m is taken to be positive for c>a. 

u=o 
Fig.1 Fig.2 Fig.3 

The solution of the previous Dirichlet problem for scheme 2 has the form 

(3) 

where Z(X) = 0 in the case of symmetry about the y axis. 
For scheme 3, the integral representation is identical with (2) if we replace w* by 2, 

q by L and B by X, and the control may be written as follows: = IV (S)l = L5 - LX (0, x W) = cl. 
We search for solutions of Problems l-3 in the class of functions f me 01 Y [rpl, 5 Id 

satisfying the H&der condition. We represent the control in (2), (3) in the form of series 
such that the area functionals are represented as quadratic forms in the coefficients of 
these series and possible restrictions are represented as linear forms. Thus, if in (2) we 
pass to the limit as t,-_S E I-1.11 and make the substitution /5/ ~=~cos8/1/~~-sin~8, 0 <e dn 
writing Q [E (e)] = 80~~ sin 2n9 (summing over n from 1 to CO), then from the parameters of the 

control area EC of the depression curve, we obtain 

(4) 

The non-degenerate extremum of the area functional in (4) is a minimum and, as in /2/, we may 
write 

for this. 

(s/q*),,, = s, - a'(4 - U*)'8(PSn + &")'/(4Jn?) 

The solution of Problem 3 differs from (5) by the replacement 
this case 

s,= 
1, 

ro(E) dE. Pzn = 
! 
cos2n9 sin e/(aa- sin*e)'l*de 

In scheme 2, we represent the control in the form of a series 

.V 19 (E)l = 8 b,CJ,, (6), (I, = sin (n anma 8 

Then 

(5) 

of Jm by -Jm. and in 
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E,,_,=Tsin(2n- i)zsinz(a* -cos* z)-‘dz 

0 

Whence, it follows that a non-degenerate extremum is a maximum of Problem 2 with 

(S/F),,, = 2&‘n-” 2 E;,_/(Bn - 1) = n-l h (a/l/a’ - 1) (‘3) 

Eq.(5) may be used to study the subsidence of mounds of surface water, since the volume or 
the area of the zone where the natural level of surface water is perturbed determines the 
rate of subsidence both in hydrodynamic and in hydraulic models /7/. The area of this zone 
appears in the expression for the filtering rate in the bottom layer AD, which is obtained 
from the formula for the conformal transformation of bands near the area /a/. 

The original Problems l-3 may be modified, both by considerinq other flow schemes and 
by introducing additional restrictions or modifications of theobjective functional.For example, 
if in scheme 1, the line AD is a contour representing supply rather than discharge, (i.e. if 
we consider the evaporation from BC) then we must replace -6-q by L+q in (1) and the - 
sign of s/q= in (4). If in scheme (2), the area G, is rotated by an angle n about the 
point (0,--T), and the flow line is replaced by the equipotential, and vice versa, Eq.(6) 
then gives an estimate of the area of the underground part of the impermeable dike flood bed. 

If in Problem 1, we search for an extremum of the area S, amongst all curves ABCD, then 
passing to the limit as E-&fgI&~<a in (2) and equating the parts AB and CD, we obtain 

s,/q* = s/q* + 4H (nq)_‘B a*,Wa, + so* 

and the extremum is expressed as a series 

(s&l=),,, = S, i- so* - Z[2HW*, (xq)-'+'I,4 (1 -a') (JI, + P**)l'l(nn) (7) 

In problems associated with the washing out of flooded layers by drainage or with the 
transport of contaminants in water-supply wells, the rate of filtering is very important. 
Thus, in Problem 2 we introduce the additional restriction on the rate V, at a point 0 above 
the drainage. Since V, = lim$' (6)/z (e) as C-M, 9' (E) may be extracted from (1) and for 
z' (E) in AD, according to (3), we have the power series 

P- 
z' = 2an-'I'/(,? - E') - 2 nb, (E - 1/C’ - i)“/f&’ - 1 

Consequently, b, = Zaq/(KV,) - 4Taix and the extremum is expressed in the form 

The estimates obtained may be used for more complicated flow schemes if variational 
theorems are used /l/. If, for example, in scheme 1, we introduce a boundary (Fig.1, the 
dotted line) or part of this boundary is assumed to be impermeable, then the depression curve 
rises, the areas S and Si increase and the corresponding values of (5) and (7) will be 
minorants but improper. 
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THE CONDITIONS FOR THE SOLUTIONS IN 

ELECTROMAGNETOELASTICITY TO BE EQUAL TO ZERO* 

S.D. KLYACHKO 

The quasistationary antiplane deformation of a cylinder and the twisting 
of a solid of rotation in conjunction with an electric or magnetic field 
for non-linear materials are considered. The conditions which guarantee 
that the stresses, displacements, induction and potential are zero for 
any boundary conditions are analysed. 

For the quasistationary antiplane deformation of a cylinder of circular cross-section 
made of a linear uniform transversely isotropic piezoelectric material with an unloaded 
contour, the specification on part of the contour of a constant electric potential, and on 
part of the contour of the conditions for matching in a vacuum, and also for certain other 
problems of the same type, it is well-known /I/ that the mechanical stresses are zero every- 
where, while the deformations and displacements are proportional to the strength and potential 
of the electric field. Below we analyse the presence of such properties in a certain class 
of problems and some allied problems. 

1. Pomitation of the probtem. Consider the quasistationary antiplane deformation of a 
cylinder (the derivatives with respect to time are zero), in conjunction with a plane electric 
field for a non-conducting neutral piezoelectric material. On the basis of a well-known 
analogy, all the results derived later also hold for the twisting of a solid of rotation in 
conjunction with an axisymmetrical electric field. For brevity we will only consider the 
antiplane deformation of a cylinder. The transverse cross-section of the cylinder is singly- 
connected or multiply-connected and is arbitrary. 

Suppose % % and .+ are orthonormalized coordinates, and the zg axis is parallel to 
the generatrix. Further i= 1,2; the notation is that generally used. Suppose the material 
is such that a state is possible for which only += u: ya =y,;o,,A o,;m: Ei; Di are non-zero 
(and are independent of a$, i.e., it is possible to consider the antiplane deformation of 
the cylinder in conjunction with a.plane electric field (/l-4/ etc.). 

We will write the equations of the problem as follows: 

(TV,; =: 0: y. s: I,,,; D,,, = 0: E, = rp,< (1.1) 

(v differs in sign from that usually employed). 
We will represent the contour r‘ in the formP= PO-t-P.= P,tP,. On P we specify mechanical 

and, simultaneously, electrical boundary conditions as follows: 

rO: o,n, = so: r,: u = s, (1.31 

I',,: D,n, = s,,: I-,: 'P = sm (1.3) 

The case when arbitrary additive constants appear in u and q is not specially stipulated, 
and these constants are fixed in a trivial way. 

In the antiplane deformation of a cylinder we will consider two classes of non-linear 
anisotropic non-uniform materials (bodies) - which we will call A and B. Suppose class A is 
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